((本小题满分12分)已知椭圆的一个焦点与抛物线的焦点重合,且椭圆短轴的两个端点与构成正三角形.(Ⅰ)求椭圆的方程;(Ⅱ)若过点的直线与椭圆交于不同两点,试问在轴上是否存在定点,使恒为定值? 若存在,求出的坐标及定值;若不存在,请说明理由.
(本小题满分12分) 在△中,,,是三角形的三内角,a,b,是三内角对应的三边长,已知 (Ⅰ)求角的大小; (Ⅱ)若,求角的大小.
(本小题满分12分) 已知是定义在R上的奇函数,当时,, (1)求函数;(2)解不等式.
设a>0且a≠1, (x≥1) (Ⅰ)求函数f(x)的反函数f-1(x)及其定义域; (Ⅱ)若,求a的取值范围
设函数的取值范围.
设A、B是函数y= log2x图象上两点, 其横坐标分别为a和a+4, 直线l: x=a+2与函数y= log2x图象交于点C, 与直线AB交于点D. (Ⅰ)求点D的坐标; (Ⅱ)当△ABC的面积大于1时, 求实数a的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号