((本小题满分12分)
由倍角公式,可知
可以表示为
的二次多项式.
对于,我们有
可见可以表示为
的三次多项式。一般地,存在一个
次多项式
,使得
,这些多项式
称为切比雪夫多项式.
(I)求证:;
(II)请求出,即用一个
的四次多项式来表示
;
(III)利用结论,求出
的值.
已知
分别是
内角
的对边,
.
(Ⅰ)若
,求
.
(Ⅱ)若
且
,求
的面积.
已知函数 .
(Ⅰ)当
时,求不等式
的解集;
(Ⅱ)若
的图像与
轴围成的三角形面积大于6,求
的取值范围.
选修4-4:坐标系与参数方程
在直角坐标系
中,直线
,圆
,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(Ⅰ)求
,
的极坐标方程;
(Ⅱ)若直线
的极坐标方程为
,设
与
的交点为
,
 ,求
的面积.
选修4-1:几何证明选讲
如图, 是 的直径, 是 的切线, 交 于 .
(Ⅰ)若 为 的中点,证明: 是 的切线;
(Ⅱ)若 ,求 的大小.
已知函数
.
(Ⅰ)当
为何值时,
轴为曲线
的切线;
(Ⅱ)用
表示
中的最小值,设函数
,讨论
)零点的个数.