((本小题满分12分)
已知:函数,(其中
,
为常数,
)图象的一个对称中心是
.
(I)求和
的值;
|
(II)求的单调递减区间;
如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x,y1),B(x2,y2).
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面积的最大值.
已知双曲线=1的离心率为2,焦点到渐近线的距离等于
,过右焦点F2的直线l交双曲线于A、B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.
已知椭圆C:=1(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
如图,在平面直角坐标系xOy中,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2=,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.