(本小题满分12分)
已知圆C:.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P()向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为
,
(
>
),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为
ξ |
0 |
1 |
2 |
3 |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求,
的值;
(Ⅲ)求数学期望ξ。
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的余弦值;
ABC中,a,b,c分别为内角A,B,C所对的边长,a=
,b=
,
,求边BC上的高.
(10分)已知是公差不为零的等差数列,
成等比数列.
(Ⅰ)求数列的通项;(Ⅱ)求数列
的前n项和
(本小题满分12分)
已知函数
(1)若,求曲线
在点
处的切线方程;
(2)若函数在其定义域内为增函数,求
的取值范围;
(3)在(2)的条件下,设函数,若在
上至少存在一点
,使得
成立,求实数
的取值范围.