为预防X病毒爆发,某生物技术公司研制出一种X病毒疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个样本分成三组,测试结果如下表:
分组 |
![]() |
![]() |
![]() |
疫苗有效 |
673 |
![]() |
![]() |
疫苗无效 |
77 |
90 |
![]() |
已知在全体样本中随机抽取1个,抽到组疫苗有效的概率是0.33.
(1)现用分层抽样的方法在全体样本中抽取360个测试结果,应在组抽取样本多少个?
(2)已知,
,求通过测试的概率.
已知中,角A,B,C,所对的边分别是
,且
;
(1)求
(2)若,求
面积的最大值.
(本小题12分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
(本小题12分)在平面直角坐标系中,点
为动点,
分别为椭圆
(a>b>0)的左右焦点.已知△
为等腰三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线与椭圆相交于
两点,
是直线
上的点,满足
,求点
的轨迹方程.
(本小题12分)如图,设P是圆上的动点,点D是P在x轴上的射影,M为PD上一点,且
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度
(本小题12分)已知F1,F2分别是椭圆(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,
=0,若椭圆的离心率等于
.
(1)求直线AO的方程(O为坐标原点);
(2)直线AO交椭圆于点B,若△ABF2的面积等于,求椭圆的方程.