如图所示,P、Q为水平面内平行放置的光滑金属长直导轨,间距为L1,处在竖直向下、磁感应强度大小为B1的匀强磁场中。一导体杆ef垂直于P、Q 放在导轨上,在外力作用下向左做匀速直线运动。质量为 m、每边电阻均为r、边长为L2的正方形金属框 abcd 置于竖直平面内,两顶点 a、b通过细导线与导轨相连,磁感应强度大小为 B2的匀强磁场垂直金属框向里,金属框恰好处于静止状态。不计其余电阻和细导线对 a、b 点的作用力。则
⑴ 判断流过dc边电流的方向;
⑵ 通过 ab 边的电流Iab是多大?
⑶ 导体杆 ef 的运动速度v是多大?
(12分)如图所示,倾角为37º的传送带以4m/s的速度沿图示方向逆时针匀速运动。已知传送带的上、下两端间的距离为L=7m。现将一质量m=0.4kg的小木块放到传送带的顶端,使它从静止开始沿传送带下滑,已知木块与传送带间的动摩擦因数为μ=0.25,取g="10m/s" 2。求:
(1) 木块滑到底的过程中,摩擦力对木块做的功;
(2) 木块滑到底的过程中,因摩擦产生的热量。
(12 分)如图所示,将质量m=0.1kg的圆环套在固定的水平直杆上,环的直径略大于杆的截面直径,环与杆的动摩擦因数μ=0.8。 对环施加一位于竖直平面内斜向上与杆夹角θ=53°的恒定拉力F,使圆环从静止开始运动,第1s内前进了2.2m。(取g=10m/s²,sin53°=0.8,cos53°=0.6)
求:(1)圆环加速度a的大小;
(2)拉力F的大小。
(8 分).已知地球同步卫星离地面的高度约为地球半径的6倍。若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,求:该行星的自转周期。
如图所示,A是一个质量为1×10-3kg表面绝缘的薄板,薄板静止在光滑的水平面上,在薄板左端放置一质量为1×10-3kg带电量为q=1×10-5C的绝缘物块,在薄板上方有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102V/m的电场,薄板和物块开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102V/m,方向向左,电场作用一段时间后,关闭电场,薄板正好到达目的地,物块刚好到达薄板的最右端,且薄板和物块的速度恰好为零. 已知薄板与物块间的动摩擦因数µ=0.1,(薄板不带电,物块体积大小不计,g取10m/s2)求:
(1)在电场E1作用下物块和薄板的加速度各为多大;
(2)电场E2作用的时间;(3)薄板的长度和薄板移动的距离.
如图所示,真空中水平放置的两个相同极板Y和Y'长为L,相距d,足够大的竖直屏与两板右侧相距b.在两板间加上可调偏转电压U,一束质量为m、带电量为+q的粒子(不计重力)从两板左侧中点A以初速度v0沿水平方向射入电场且能穿出.
(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O点;
(2)求两板间所加偏转电压U的范围;
(3)求粒子可能到达屏上区域的长度.