已知正方体,
是底
对角线的交点.
求证:(1)C1O∥面;
(2)面
.
中内角
的对边分别为
,向量
且
(1)求锐角
的大小;(2)如果
,求
的面积
的最大值
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,
G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.
已知集合,
,求
.
(本小题满分14分)已知函数(
为常数,
).
(Ⅰ)若是函数
的一个极值点,求
的值;
(Ⅱ)求证:当时,
在
上是增函数;
(Ⅲ)若对任意的(1,2),总存在
,使不等式
成立,求实数
的取范围.
(本小题满分14分)已知椭圆:
的离心率是
,其左、右顶点分别为
,
,
为短轴的端点,△
的面积为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)为椭圆
的右焦点,若点
是椭圆
上异于
,
的任意一点,直线
,
与直线
分别交于
,
两点,证明:以
为直径的圆与直线
相切于点
.