(本小题满分12分)
如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,平面CDE
(I)求证:平面ADE;
(II)在线段BE上存在点M,使得直线M与平面EAD所成角的正弦值为,试确定点M的位置。
已知函数的图象在点
处的切线方程为
.
(1)求实数的值;
(2)设.
①若是
上的增函数,求实数
的最大值;
②是否存在点,使得过点
的直线若能与曲线
围成两个封闭图形,则这两个封闭图形的面积总相等.若存在,求出点
坐标;若不存在,说明理由.
已知椭圆的两个焦点分别为
和
,离心率
.
(1)求椭圆的方程;
(2)若直线(
)与椭圆
交于不同的两点
、
,且线段
的垂直平分线过定点,求实数
的取值范围.
已知数列是公差为
的等差数列,且
.
(1)求数列的通项公式;
(2)设数列的前
项和为
.
证明:.
如图:已知长方体的底面
是边长为
的正方形,高
,
为
的中点,
与
交于
点.
(1)求证:平面
;
(2)求证:∥平面
;
(3)求三棱锥的体积.
甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:
甲 86 77 92 72 78
乙 78 82 88 82 95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若从甲、乙两人的5次成绩中各随机抽取一个,求甲的成绩比乙高的概率.