如图,垂直于矩形
所在的平面,
分别是
的中点.
(I)求证:平面
;
(Ⅱ)求证:平面平面
.
(本小题满分12分)已知数列中,
.
(1)求证:是等比数列,并求
的通项公式
;
(2)数列满足
,求数列
的前
项和为
.
(本小题满分12分)已知函数(其中
为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,设函数
的
个极值点为
,且
.证明:
.
(本小题满分12分)如图所示,在平面直角坐标系中,设椭圆
,其中
,过椭圆
内一点
的两条直线分别与椭圆交于点
和
,且满足
,
,其中
为正常数. 当点
恰为椭圆的右顶点时,对应的
.
(1)求椭圆的离心率;
(2)求与
的值;
(3)当变化时,
是否为定值?若是,请求出此定值;若不是,请说明理由.
(本小题满分12分)如图,在四棱锥中,平面
平面
,
∥
,已知
(1)设是
上的一点,求证:平面
平面
;
(2)当三角形为正三角形时,点
在线段
(不含线段端点)上的什么位置时,二面角
的大小为
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.