做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第1颗骰子出现的点数,y 表示第2颗骰子出现的点数,写出:
(1)求事件“出现点数相等”的概率 (2)求事件“出现点数之和大于8”的概率。
某机构向民间招募防爆犬,首先进行入围测试,计划考察三个项目:体能,嗅觉和反应.这三个项目中只要有两个通过测试,就可以入围.某训犬基地有4只优质犬参加测试,已知它们通过体能测试的概率都是1/3,通过嗅觉测试的概率都是1/3,通过反应测试的概率都是1/2.
求(1)每只优质犬能够入围的概率;
(2)若每入围1只犬给基地记10分,设基地的得分为随机变量ξ,求ξ的数学期望.
在△ABC中,;(1)求:AB2+AC2的值;(2)当△ABC的面积最大时,求A的大小.
已知函数f (x)=| x-a | + | x + 2 |(a为常数,且a∈R).
(Ⅰ)若函数f (x)的最小值为2,求a的值;
(Ⅱ)当a=2时,解不等式f (x)≤6.
在极坐标系中,已知两点O(0,0),B(2,
).
(Ⅰ)求以OB为直径的圆C的极坐标方程,然后化成直角坐标方程;
(Ⅱ)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.
如图,已知C、F是以AB为直径的半圆上的两点,且CF=CB,过C作CD^AF交AF的延长线与点D.
(Ⅰ)证明:CD为圆O的切线;
(Ⅱ)若AD=3,AB=4,求AC的长.