(本小题满分12分)
随机抽取某中学甲乙两个班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图(中间的数字表示身高的百位、十位,旁边的数字分别表示身高的个位数)如图所示。
(I)根据茎叶图判断哪个班的平均身高较高;
(II)计算甲班的样本方差;
(III)现从乙班这10名同学中随机抽取两名身高不低于175cm的同学,求身高为176cm的同学被抽中的概率。
(本题满分12分)在中,
分别是
所对的边长,且满足
.
(1)求角的大小;
(2)若,
的面积为
,求证:
是等边三角形.
(本题满分10分)
已知函数.
(1)求函数的最小正周期;
(2)求在
上的最大值和最小值.
椭圆的两焦点坐标分别为F1(,0),F2(
,0),且椭圆过点P(1,
).
(1)求椭圆方程;
(2)若 A为椭圆的左顶点,作AM⊥AN与椭圆交于两点M、N,试问:直线MN是否恒过x轴上的一个定点?若是,求出该点坐标;若不是,请说明理由.
若椭圆C1:的离心率等于
,抛物线C2:x2=2py(p>0)的焦点是椭圆C1的一个顶点.
(1)求抛物线C2的方程;
(2)若过M(-1,0)的直线l与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
已知二次函数y=f(x)的图象经过坐标原点,其导函数f ′(x)=2x+2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn=2n·an,Tn是数列{bn}的前n项和,求Tn.