游客
题文

(本题满分14分)
如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
  
(Ⅰ) 设二面角E – AC – D1的大小为q,若£q£,求线段BE长的取值范围;
(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分14分)已知焦点在轴上的椭圆的离心率为分别为左右焦点,过点作直线交椭圆两点之间)两点,且关于原点的对称点为.
(1)求椭圆的方程;
(2)求直线的方程;
(3)过任作一直线交过三点的圆于两点,求面积的取值范围.

(本小题满分13分)已知函数(其中是自然对数的底数),导函数。
(1)当时,其曲线在点处的切线方程;
(2)若时,都有解,求的取值范围;
(3)若,试证明:对任意恒成立.

(本小题满分12分)数列的前n项和为,且
(1)求数列的通项公式;
(2)若数列满足:,求数列的通项公式;
(3)令,求数列的 n项和.

(本小题满分12分)已知一个袋子里装有只有颜色不同的6个小球,其中白球2个,黑球4个,现从中随机取球,每次只取一球.
(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;
(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望.

(本小题满分12分)如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且

(1)证明:平面ABEF平面BCDE;
(2)求平面ABC与平面DEF所成的二面角(锐角)的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号