已知函数
(1)讨论的单调性
(2)设点在曲线
上,若该曲线在点
处的切线通过原点,求切线
的方程
在平面直角坐标系
中,将从点
出发沿纵、横方向到达点
的任一路径成为
到
的一条"
路径"。如图所示的路径
都是
到
的"
路径"。某地有三个新建的居民区,分别位于平面
内三点
处。现计划在
轴上方区域(包含x轴)内的某一点
处修建一个文化中心。
(I)写出点
到居民区
的"
路径"长度最小值的表达式(不要求证明);
(II)若以原点
为圆心,半径为1的圆的内部是保护区,"
路径"不能进入保护区,请确定点
的位置,使其到三个居民区的"
路径"长度值和最小。
如图,在直棱柱 .
(I)证明:
;
(II)求直线
所成角的正弦值.
某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横的交叉点记忆三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量
(单位:
)与它的"相近"作物株数
之间的关系如下表所示:
1 |
2 |
3 |
4 |
|
51 |
48 |
45 |
42 |
这里,两株作物"相近"是指它们之间的直线距离不超过1米.
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好"相近"的概率;
(II)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
已知函数
.
(I)若
是第一象限角,且
.求
的值;
(II)求使
成立的
的取值集合.
设函数
(其中
).
(Ⅰ) 当
时,求函数
的单调区间;
(Ⅱ) 当
时,求函数
在
上的最大值
.