设椭圆M:(a>b>0)的离心率与双曲线
的离心率互为倒数,且内切于圆
.
(1)求椭圆M的方程;
(2)若直线交椭圆于A、B两点,椭圆上一点
,
求△PAB面积的最大值.
圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过圆O1、圆O2交点的直线的直角坐标方程.
在极坐标系中,已知曲线C1:ρ=12sinθ,曲线C2:ρ=12cos.
(1)求曲线C1和C2的直角坐标方程;
(2)若P、Q分别是曲线C1和C2上的动点,求PQ的最大值.
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为,直线的极坐标方程为ρcos
=a,且点A在直线上.
(1)求a的值及直线的直角坐标方程;
(2)圆C的参数方程为,(α为参数),试判断直线与圆的位置关系.
在极坐标系中,求点到直线ρsinθ=2的距离.
在极坐标系中,已知圆C经过点P,圆心为直线ρsin
=-
与极轴的交点,求圆C的极坐标方程.