.
已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1+r.
(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由.
(2)设,
,
若r>c>4,求证:对于一切n∈N*,不等式恒成立.
已知椭圆的左顶点为
,
是椭圆
上异于点
的任意一点,点
与点
关于点
对称.
(1)若点的坐标为
,求
的值;
(2)若椭圆上存在点
,使得
,求
的取值范围.
如图,在四棱锥中,
,
平面
,
平面
,
,
,
.
(Ⅰ)求棱锥的体积;
(Ⅱ)求证:平面平面
;
(Ⅲ)在线段上是否存在一点
,使
平面
?若存在,求出
的值;若不存在,说明理由.
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组
,
,第五组
.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“
”发生的概率.
已知是等差数列,满足
,数列
满足
,且
为等比数列.
(1)求数列的通项公式;
(2)求数列的前n项和.
选修4-5:不等式选讲
已知函数.
(Ⅰ)若不等式的解集为空集,求实数
的取值范围;
(Ⅱ)若且
,求证:
.