游客
题文

(理)(本小题8分)如图,在四棱锥中,底面是矩形, 平面,以的中点为球心为直径的球面交于点.
(1) 求证:平面平面
(2)求点到平面的距离.  
证明:(1)由题意,在以为直径的球面上,则

平面,则
平面

平面
∴平面平面.      
(2)∵的中点,则点到平面的距离等于点到平面的距离的一半,由(1)知,平面,则线段的长就是点到平面的距离
 
∵在中,
的中点,                
则点到平面的距离为                
(其它方法可参照上述评分标准给分)

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求: (1)3个全是红球的概率; (2)3个颜色全相同的概率;
(3)3个颜色不全相同的概率; (4)3个颜色全不相同的概率.

已知p:|1-|≤2, q:x2-2x+1-m2≤0(m>0),若﹁p是﹁q的必要而不充分条件,求实数m的取值范围.

已知算法:(1)指出其功能(用算式表示),

(2)将该算法用流程图描述.

(文)如图,|AB|=2,O为AB中点,直线过B且垂直于AB,过A的动直线与交于点C,点M在线段AC上,满足=.

(I)求点M的轨迹方程;
(II)若过B点且斜率为- 的直线与轨迹M交于点P,点Q(t,0)是x轴上任意一点,求当ΔBPQ为锐角三角形时t的取值范围.

(理)已知数列{an}的前n项和,且=1,
.
(I)求数列{an}的通项公式;
(II)已知定理:“若函数f(x)在区间D上是凹函数,x>y(x,y∈D),且f’(x)存在,则有
< f’(x)”.若且函数y=xn+1在(0,+∞)上是凹函数,试判断bn与bn+1的大小;
(III)求证:≤bn<2.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号