探究函数的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.
x |
… |
0.25 |
0.5 |
0.75 |
1 |
1.1 |
1.2 |
1.5 |
2 |
3 |
5 |
… |
y |
… |
8.063 |
4.25 |
3.229 |
3 |
3.028 |
3.081 |
3.583 |
5 |
9.667 |
25.4 |
… |
已知:函数在区间(0,1)上递减,问:
(1)函数在区间 上递增.当
时,
;
(2)函数在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)
已知三点:,
,
(1)若,且
,求角
的值;
(2)若,求
的值
已知函数f(x)=-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2
(1)当x1=,x2=
时,求a,b的值;
(2)若w=2a+b,求w的取值范围;
设数列{an}满足a1=1,an=
(1)求a2、a3、a4、a5;
(2)归纳猜想数列的通项公式an,并用数学归纳法证明;
(3)设bn={anan+1},求数列{bn}的前n项和Sn。
定义在上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
已知函数;
.
(1)当时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数在
上是以3为上界的有界函数,求实数
的取值范围;
(3)若,函数
在
上的上界是
,求
的取值范围.
由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y="f" -1(x)能确定数列{bn},bn=" f" –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=确定数列{an}的自反数列为{bn},求an;
(2)已知正数数列{cn}的前n项之和Sn=(cn+
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.