(
已知与
都是边长为2的等边三角形,且平面
平面
,过点
作
平面
,且
.
(Ⅰ)求证:平面
;
(Ⅱ)求直线与平面
所成角的大小.
已知椭圆的中心在坐标原点,以坐标轴为对称轴,且经过两点P1(,1)、P2(-
,-
),求椭圆方程.
若椭圆b2x2+a2y2=a2b2(a>b>0)的左焦点为F,右顶点为A,上顶点为B,且离心率为,求∠ABF.
已知椭圆=1(a>b>0)与x轴的正半轴交于点A,O是原点.若椭圆上存在一点M,使MA⊥MO,求椭圆离心率e的取值范围.
如图,点A、B分别是椭圆=1长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
设P为椭圆=1(a>b>0)上任一点,F1、F2分别为左、右焦点,求|PF1|·|PF2|的最大、最小值.