设,在线段
上任取两点C,D(端点
除外),将线段
分成三条线段AC,CD,DB.
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形(称事件A)的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形(称事件B)的概率;
(3)根据以下用计算机所产生的20组随机数,试用随机数摸拟的方法,来近似计算(Ⅱ)中事件B的概率.
20组随机数如下:
|
1组 |
2组 |
3组 |
4组 |
5组 |
6组 |
7组 |
8组 |
9组 |
10组 |
X |
0.52 |
0.36 |
0.58 |
0.73 |
0.41 |
0.![]() |
0.05 |
0.32 |
0.38 |
0.73 |
Y |
0.76 |
0.39 |
0.37 |
0.01 |
0.04 |
0.28 |
0.03 |
0.15 |
0.14 |
0![]() |
|
11组 |
12组 |
13组 |
14组 |
15组 |
16组 |
17组 |
18组 |
19组 |
20组 |
X |
0.67 |
0.47 |
0.58 |
0.21 |
0.54 |
0.![]() |
0.36 |
0.35 |
0.95 |
0.14 |
Y |
0.41 |
0.54 |
0.51 |
0.37 |
0.31 |
0.23 |
0.56 |
0.89 |
0.17 |
0.03 |
(X是之间的均匀随机数,Y也是
之间的均匀随机
数)
(本小题12分)在△ABC中,BC=a,AC=b,a,b是方程的两个根,且
。
求:(1)角C的度数;(2)AB的长度。
(本小题12分)设,求函数
的最大值.
(本小题12分)已知是等差数列,其中
(1)求的通项公式;
(2)数列从哪一项开始小于0。
某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16 .
第一批 |
第二批 |
第三批 |
|
女 |
196 |
x |
y |
男 |
204 |
156 |
z |
(1)求的值;
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?
(3)已知,求第三批次中女教职工比男教职工多的概率.
某校高三某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下图,据此解答如下问题:
(1)求分数在的频率及全班的人数;
(2)求分数在之间的频数,并计算频率分布直方图中
间的矩形的高;
(3)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在
之间的概率。