(本小题15分)
设数列{}的前n项和为
,并且满足
,
(n∈N*).
(Ⅰ)求,
,
;
(Ⅱ)猜想{}的通项公式,并用数学归纳法加以证明;
(Ⅲ)设,
,且
,证明:
≤
.
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,AB
AD,M为EC的中点,AF=AB=BC=FE=
AD
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD
平面CDE;
(3)求二面角A-CD-E的余弦值.
如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值.
如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点
求证:(1)直线EF//平面PCD;(2)平面BEF⊥平面PAD
已知椭圆G:+y2=1.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将|AB|表示为m的函数,并求|AB|的最大值.
已知点是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点的轨迹方程;
(2)已知点,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由