(本小题共13分)
用表示不大于
的最大整数.令集合
,对任意
和
,定义
,集合
,并将集合
中的元素按照从小到大的顺序排列,记为数列
.
(Ⅰ)求的值;
(Ⅱ)求的值;
(Ⅲ)求证:在数列中,不大于
的项共有
项.
(本小题满分12分)已知数列的前
项和为
,
,
,
.
(Ⅰ) 求证:数列是等比数列;
(Ⅱ) 设数列的前
项和为
,
,点
在直线
上,若不等式
对于
恒成立,求实数
的最大值。
(本小题满分12分)如图,在多面体中,底面
是边长为
的的菱形,
,四边形
是矩形,平面
平面
,
,
和
分别是
和
的中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的大小.
(本小题满分12分)已知函数在
处取得极值。
(1)求的值;
(2)求证:对任意,都有
(本小题满分12分)已知函数.
(1)若,求函数
的最大值和最小值,并写出相应的
的值;
(2)设的内角
、
、
的对边分别为
,满足
,且
,求
的值.
(本小题满分10分)【选修4-5:不等式选讲】
设函数(
).
(Ⅰ)证明:;
(Ⅱ)若,求
的取值范围.