电动机通过一绳子吊起一个质量为8kg的物体,已知绳子所能承受的最大拉力为120N,电动机的额定功率为1200W,电动机实际功率可调,不计额外功,g取10m/s2,求:
(1)电动机吊起此物体的最大加速度;
(2)电动机以最大加速度由静止开始匀加速吊起此物体所能持续的最长时间;
(3)电动机吊起此物体的所能达到的最大速度;
(4)电动机能否以额定功率将此物体由静止开始吊起?请简要说明理由。
可控热核聚变反应堆产生能量的方式和太阳类似,因此,它被俗称为“人造太阳”.热核反应的发生,需要几千万度以上的高温,因而反应中的大量带电粒子没有通常意义上的容器可装.人类正在积极探索各种约束装置,磁约束托卡马克装置就是其中一种.如图3 10 1所示为该装置的简化模型.有一个圆环形区域,区域内有垂直纸面向里的匀强磁场,已知其截面内半径为R1=1.0 m,磁感应强度为B=1.0 T,被约束粒子的比荷为 =4.0×107 C/kg,该带电粒子从中空域与磁场交界面的P点以速度v0=4.0×107 m/s,沿环的半径方向射入磁场(不计带电粒子在运动过程中的相互作用,不计带电粒子的重力).
(1)为约束该粒子不穿越磁场外边界,求磁场区域的最小外半径R2.
(2)若改变该粒子的入射速度v,使v=v0,求该粒子从P点进入磁场开始到第一次回到P点所需要的时间t.
如图所示,在平面坐标系xOy内,第Ⅱ、Ⅲ象限内存在沿y轴正方向的匀强电场,电场强度大小为E,第Ⅰ、IV象限内存在方向垂直于纸面向外的匀强磁场.一带正电的粒子从第III象限中的Q点( 2L, L)以速度v0沿x轴正方向射出,恰好从坐标原点O进入磁场,然后又从y轴上的P(0, 2L)点射出磁场.不计粒子重力,求:
(1)粒子在磁场中做圆周运动的半径r;
(2)粒子的比荷和磁场的磁感应强度大小B;
(3)粒子从Q点出发运动到P点的时间t.
如图所示,在0≤ x≤ a、0≤ y≤范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内.已知粒子在磁场中做圆周运动的半径介于
到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的:
(1)速度大小;
(2)速度方向与y轴正方向夹角的正弦.
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。
(不计空气阻力)求:
(1)滑块经过B点时速度的大小;
(2)滑块冲到圆弧轨道最低点B时对轨道的压力;
(3)滑块在圆弧轨道BC段克服摩擦力所做的功。
如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B端的切线沿水平方向。质量m=1.0kg的滑块(可视为质点)在水平恒力F=10.0N的作用下,从A点由静止开始运动,当滑块运动的位移x=0.50m时撤去力F。已知A、B之间的距离x0=1.0m,滑块与水平轨道间的动摩擦因数μ=0.10,取g=10m/s2。求:
(1)在撤去力F时,滑块的速度大小;
(2)滑块通过B点时的动能;
(3)滑块通过B点后,能沿圆弧轨道上升的最大高度h=0.35m,求滑块沿圆弧轨道上升过程中克服摩擦力做的功。