某工厂对某产品的产量与单位成本的资料分析后有如下数据:
月 份 |
1 |
2 |
3 |
4 |
5 |
6 |
产量x千件 |
2 |
3 |
4 |
3 |
4 |
5 |
单位成本y元/件 |
73 |
72 |
71 |
73 |
69 |
68 |
(Ⅰ) 画出散点图,并判断产量与单位成本是否线性相关。
(Ⅱ) 求单位成本y与月产量x之间的线性回归方程。(其中已计算得:,结果保留两位小数)
A、B是单位圆O上的动点,且A、B分别在第一、二象限.C是圆O与x轴正半轴的交点,△AOB为正三角形.记∠AOC=α.
(1)若A点的坐标为,求
的值;
(2)求的取值范围.
已知函数f(x)=sin
.
(1)求它的振幅、周期、初相;
(2)在所给坐标系中用五点法作出它在区间上的图象.
(3)说明y=sin x的图像可由y=sin
的图像经过怎样的变换而得到.
如图,函数的图象与
轴相交于点
,且该函数的最小正周期为
.
(1)、求和
的值;
(2)、已知点,点
是该函数图象上一点,
点是
的中点,当
,
时,求
的值.
已知数列的前
项和为
,且满足
(
),
,设
,
.
(1)求证:数列是等比数列;
(2)若≥
,
,求实数
的最小值;
(3)当时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
且
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
已知点,
、
、
是平面直角坐标系上的三点,且
、
、
成等差数列,公差为
,
.
(1)若坐标为
,
,点
在直线
上时,求点
的坐标;
(2)已知圆的方程是
,过点
的直线交圆于
两点,
是圆
上另外一点,求实数
的取值范围;
(3)若、
、
都在抛物线
上,点
的横坐标为
,求证:线段
的垂直平分线与
轴的交点为一定点,并求该定点的坐标.