某中学的地理兴趣小组在本校学生中开展主题为“地震知识知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级 |
非常了解 |
比较了解 |
基本了解 |
不太了解 |
频数 |
40 |
120 |
n |
4 |
频率 |
0.2 |
m |
0.18 |
0.02 |
(1)表中的m的值为_______,n的值为 .
(2)根据表中的数据,请你计算“非常了解”的频率在下图中所对应的扇形的圆心角的度数,并补全扇形统计图.
(3)若该校有1500名学生,请根据调查结果估计这些学生中“比较了解”的人数约为多少?
先化简,再求值: ,其中 , .
已知方程组 的解满足 ,求 的取值范围.
抛物线 交 轴于 两点( 在 的左边), 是第一象限抛物线上一点,直线 交 轴于点 .
(1)直接写出 两点的坐标;
(2)如图(1),当 时,在抛物线上存在点 (异于点 ),使 两点到 的距离相等,求出所有满足条件的点 的横坐标;
(3)如图(2),直线 交抛物线于另一点 ,连接 交 轴于点 ,点 的横坐标为 .求 的值(用含 的式子表示).
【问题提出】
如图(1),在 中, , 是 的中点,延长 至点 ,使 ,延长 交 于点 ,探究 的值.
【问题探究】
(1)先将问题特殊化.如图(2),当 时,直接写出 的值;
(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.
【问题拓展】
如图(3),在 中, , 是 的中点, 是边 上一点, ,延长 至点 ,使 ,延长 交 于点 .直接写出 的值(用含 的式子表示).
在一条笔直的滑道上有黑、白两个小球同向运动,黑球在 处开始减速,此时白球在黑球前面 处.
小聪测量黑球减速后的运动速度 (单位: )、运动距离 (单位: )随运动时间 (单位: )变化的数据,整理得下表.
运动时间t/s |
|
|
|
|
|
运动速度v/cm/s |
|
|
9 |
|
|
运动距离y/cm |
|
|
19 |
|
|
小聪探究发现,黑球的运动速度 与运动时间 之间成一次函数关系,运动距离 与运动时间 之间成二次函数关系.
(1)直接写出 关于 的函数解析式和 关于 的函数解析式(不要求写出自变量的取值范围);
(2)当黑球减速后运动距离为 时,求它此时的运动速度;
(3)若白球一直以 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.