【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.
一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.
⑴ 求出月销售量y(万件)与销售单价x(元)之间的函数关系式;
⑵ 求出月销售利润z(万元)与销售单价x(元)之间的函数关系式,并在下面坐标系中,画出图象草图;
⑶ 为了使月销售利润不低于480万元,请借助⑵中所画图象进行分析,说明销售单价的取值范围.
如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.
⑴ 画出△AOB关于x轴的对称.
⑵ 画出将△AOB绕点O顺时针旋转90°的,并判断
和
在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.
⑶ 若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.
如图,在□ABCD中,E,F为BC上两点,且BE=CF,AF=DE.
求证:四边形ABCD是矩形.
如图,点A、C、B、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.
求证:AE=FC.
为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°.
体育成绩统计表
体育成绩 |
人数(人) |
百分比(%) |
26 |
8 |
16 |
27 |
24 |
|
28 |
15 |
|
29 |
||
30 |
根据上面提供的信息,回答下列问题:
⑴ 填写表格中所缺数据,并写出样本容量与这些学生体育成绩的中位数;
⑵ 已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的人数.