一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.
⑴ 求出月销售量y(万件)与销售单价x(元)之间的函数关系式;
⑵ 求出月销售利润z(万元)与销售单价x(元)之间的函数关系式,并在下面坐标系中,画出图象草图;
⑶ 为了使月销售利润不低于480万元,请借助⑵中所画图象进行分析,说明销售单价的取值范围.
观察下列图形的变化过程,解答以下问题:
如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.
(1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;
(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形.为什么?
已知:在平面直角坐标系中,点A(1,0),点B(4,0),点C在y轴正半轴上,且OB=2OC.
(1)试确定直线BC的解析式;
(2)在平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M的坐标.
已知m,n,d为一个直角三角形的三边长,且有=8n﹣n2﹣16,求三角形三边长分别为多少?
(1)某水果批发商,批发苹果不少于80kg时,批发价为2.5元/kg,小张携现金2500元到这个市场采购苹果,并以批发价买进,设购买的苹果为xkg,小张付款后还剩余现金y元,写出y与x的函数关系式,并指出自变量x的取值范围.
(2)在直角坐标系中,直接画出函数y=|x+1|的图象.
我县某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?