(年贵州省黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/时;当车流密度为20辆/千米时,车流速度为80千米/时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.
(1)求彩虹桥上车流密度为100辆/千米时的车流速度;
(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/时且小于60千米/时,应控制彩虹桥上的车流密度在什么范围内?
(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.
先化简再求值,已知a2+2a﹣7=0.
已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4.设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN∥x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒.求S关于t的函数关系式.
如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC,交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)其中BC=6,cosC=,求⊙O的半径;
(3)如果⊙O在如图位置开始沿着射线BA方向移动,当OB满足什么条件时,⊙O与直线AC相交?(直接写出结果)
某公司生产的一种时令商品每件成本为20元,经过市场调研发现,这种商品在未来20天内的日销售量m(件)与时间t(天)的关系如表:
时间t(天) |
1 |
3 |
6 |
10 |
… |
日销售量m(件) |
94 |
90 |
84 |
76 |
… |
未来20天内每天的价格y(元/件)与时间t(天)的函数关系式为y=t+25(1≤t≤20且t为整数).
(1)认真分析表中的数据,用所学过的函数知识,确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)设未来20天日销售利润为p(元).请求出p(元)与t(天)之间的关系式;并预测未来20天中哪一天的日销售利润最大,最大日销售利润是多少?