已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=,记动点P的轨迹为C.
(1)求C的方程;
(2)若A、B是曲线C上不同的两点,O是坐标原点,求的最小值.
设函数
(Ⅰ)若,是否存在k和m,使得
,
,若存在,求出k和m的值,若不存在,说明理由
(Ⅱ)设 有两个零点
,且
成等差数列,
是 G (x)的导函数,求证:
已知椭圆 的离心率为
,且过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若 .
(i)求 的最值:
(i i)求证:四边形ABCD的面积为定值.
如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD, ,FC
平面ABCD, AE
BD,CB =CD=-CF.
(Ⅰ)求证:平面ABCD 平面AED;
(Ⅱ)直线AF与面BDF所成角的余弦值
在乒乓球比赛中,甲与乙以“五局三胜”制进行比赛,根据以往比赛情况,甲在每一局胜乙的概率均为 .已知比赛中,乙先赢了第一局,求:
(Ⅰ)甲在这种情况下取胜的概率;
(Ⅱ)设比赛局数为X,求X的分布列及数学期望(均用分数作答)。
在△ABC中,己知 ,sinB= sinCcos
,又△ABC的面积为6(Ⅰ)求△ABC的三边长;(Ⅱ)若D为BC边上的一点,且CD=1,求
.