(本小题满分10分)选修4-1《几何证明选讲》.
已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点
(Ⅰ)求证:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.
(本题满分12分) 如图,正三棱柱ABC—A1B1C1的所有棱长均为2,P是侧棱AA1上任意一点.
(1)求证:B1P不可能与平面ACC1A1垂直;
(2)当BC1⊥B1P时,求线段AP的长;
(3)在(2)的条件下,求二面角CB1PC1的大小.
(本题满分12分) 已知函数,求
(Ⅰ)函数的定义域和值域;(Ⅱ)写出函数的单调递增区间.
(本题满分12分) 已知函数=
,在x=1处取得极值为2.(1)求函数
的解析式;(2)若函数
在区间(m,2m+1)上为增函数,求实数m的取值范围;(3)若P(x0,y0)为
=
图象上的任意一点,直线l与
=
的图象相切于点P,求直线l的斜率的取值范围.
(本小题满分14分)
设函数,有
。
(1)求的值;(2)求数列
的通项公式;(3)是否存在正数
均成立,若存在,求出k的最大值,并证明,否则说明理由。
(本小题满分12分)
|
|
如图,A为椭圆上
|
|
的一个动点,弦AB、AC分别过焦点
|
F1、F2。当AC垂直于x轴时,恰好
|
∶
=3∶1.