(本小题满分14分)
给定椭圆,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴随圆”. 若椭圆C的一个焦点为
,其短轴上的一个端点到
距离为
.
(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若过点的直线
与椭圆C只有一个公共点,且
截椭圆C的“伴随圆”所得的弦长为
,求
的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得
与椭圆C都只有一个公共点,试判断直线
的斜率之积是否
为定值,并说明理由.
已知是正整数,
的展开式中
的系数为7.求
展开式中
的系数的最小值,并求这时
的近似值(精确到0.01).
6个人坐在一排10个座位上,则(用数字表示).
(1)空位不相邻的坐法有多少种?
(2)4个空位只有3个相邻的坐法有多少种?
(3)4个空位至多有2个相邻的坐法有多少种?
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数
)的图象,且点M到边OA距离为
.
(1)当时,求直路
所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
已知函数
(1)求函数的单调区间;
(2)若函数的图像与直线
恰有两个交点,求
的取值范围.
设集合为函数
的定义域,集合
为函数
的值域,集合
为不等式
的解集.
(1)求;
(2)若,求
的取值范围.