如图所示,两平行金属板A、B长度l=0.8m,间距d=0.6m.直流电源E能提供的最大电压为9×105V,位于极板左侧中央的粒子源可以沿水平方向向右连续发射比荷为=l×107C/kg、重力不计的带电粒子,射人板间的粒子速度均为v0=4×106
m/s.在极板右侧有一个垂直纸面向里的匀强磁场,磁感应强度B=lT,分布在环带区域中,该环带的内外圆的圆心与两板间的中心重合于O点,环带的内圆半径Rl=
m.将变阻器滑动头由a向b慢慢滑动,改变两板间的电压时,带电粒子均能从不同位置穿出极板射向右侧磁场,且两板间电压最大时,对应的粒子恰能从极板右侧边缘穿出.
(1)问从板间右侧射出的粒子速度的最大值vm是多少?
(2)若粒子射出电场时,速度的反向延长线与v0所在直线交于O/点,试用偏转运动相关量证明O/点与极板右端边缘的水平距离x=,即O/与0重合,所有粒子都好像从两板的中心射 出一样.
(3)为使粒子不从磁场右侧穿出,求环带磁场的最小宽度d.
如图所示,长度为L、倾角θ=30°的斜面AB,在斜面顶端B向左水平抛出小球1、同时在底端A正上方某高度处水平向右抛出小球2,小球2垂直撞在斜面上的位置P,小球1也同时落在P点。求两球平抛的初速度v1、v2和BD间距离h。
如图所示,在y轴上A点沿平行x轴正方向以v0发射一个带正电的粒子,在该方向上距A点3R处的B点为圆心存在一个半径为R的圆形有界的匀强磁场,磁场方向垂直纸面向外,当粒子通过磁场后打到x轴上的C点,且速度方向与x轴正向成60°角斜向下,已知带电粒子的电量为q,质量为m,粒子的重力忽略不计,O点到A点的距离为R.求:
(1)该磁场的磁感应强度B的大小
(2)若撤掉磁场,在该平面内加上一个与y轴平行的有界匀强电场,粒子仍按原方向入射,当粒子进入电场后一直在电场力的作用下打到x轴上的C点且速度方向仍与x轴正向成60°角斜向下,则该电场的左边界与y轴的距离为多少?
(3)若撤掉电场,在该平面内加上一个与(1)问磁感应强度大小相同的矩形有界匀强磁场,磁场方向垂直纸面向里,粒子仍按原方向入射,通过该磁场后打到x轴上的C点且速度方向仍与x轴正向成60°角斜向下,则所加矩形磁场的最小面积为多少?
有一个固定的光滑直杆,该直杆与水平面的夹角为53°,杆上套着一个质量为m=2kg的滑块(可视为质点).
(1)如图甲所示,滑块从O点由静止释放,下滑了位移x=1m后到达P点,求滑块此时的速率.
(2)如果用不可伸长的细绳将滑块m与另一个质量为M=2.7kg的物块通过光滑的定滑轮相连接,细绳因悬挂M而绷紧,此时滑轮左侧绳恰好水平,其长度m(如图乙所示).再次将滑块从O点由静止释放,求滑块滑至P点的速度大小。
(整个运动过程中M不会触地,)
如图所示,串联阻值为R的闭合电路中,面积为S的正方形区域abcd存在一个方向垂直纸面向外、磁感应强度均匀增加且变化率为k的匀强磁场Bt,abcd的电阻值也为R,其他电阻不计.电阻两端又向右并联一个平行板电容器.在靠近M板处由静止释放一质量为m、电量为+q的带电粒子(不计重力),经过N板的小孔P进入一个垂直纸面向内、磁感应强度为B的圆形匀强磁场,已知该圆形匀强磁场的半径为
。求:
(1)电容器获得的电压;
(2)带电粒子从小孔P射入匀强磁场时的速度;
(3)带电粒子在圆形磁场运动时的轨道半径及它离开磁场时的偏转角
引体向上运动是同学们经常做的一项健身运动。如图所示,质量为m的某同学两手正握单杠,开始时,手臂完全伸直,身体呈自然悬垂状态,此时他的下鄂距单杠面的高度为H,然后他用恒力F向上拉,下颚必须超过单杠面方可视为合格,已知H=0.6m,m=60kg,重力加速度g=10m/s2。不计空气阻力,不考虑因手弯曲而引起人的重心位置变化。
(1)第一次上拉时,该同学持续用力(可视为恒力),经过t=1s时间,下鄂到达单杠面,求该恒力F的大小及此时他的速度大小。
(2) 第二次上拉时,用恒力F/=720N拉至某位置时,他不再用力,而是依靠惯性继续向上运动,为保证此次引体向上合格,恒力F的作用时间至少为多少?