两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。物块从静止滑下,然后又滑上劈B。求物块在B上能够达到的最大高度。
如图所示,水平地面上方分布着水平向右的匀强电场,一“L”形的光滑绝缘硬质管竖直固定在匀强电场中,管的水平部分长L1=0.2m,离水平地面的高度为h=5.0m,竖直部分长为L2=0.1m,一带正电的小球从管的上端口A由静止释放,小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球受到的电场力大小为重力的一半,空气阻力忽略不计。求:(g=10m/s2)
(1)小球运动到管口B时的速度大小;
(2)小球着地点与管的下端口B的水平距离。
一质量为M=4kg、长为L=3m的木板,在水平向右F=8N的拉力作用下,以ν0=2m/s的速度沿水平面向右匀速运动。某时刻将质量为m=1kg的铁块(看成质点)轻轻地放在木板的最右端,如图.不计铁块与木板间的摩擦。若保持水平拉力不变,请通过计算说明小铁块能否离开木板?若能,进一步求出经过多长时间离开木板?
设长为L的正确方形线框的电阻为R,将以恒定速度匀速穿过有界匀强磁场,磁场的磁感应强度为B,v的方向垂直于B,也垂直于磁场边界,磁场范围的宽度为d,如图所示,则,
(1)若L<d,求线框穿过磁场安培力所做的功;
(2)若L>d,求线框穿过磁场安培力所做的功。
如图所示,在光滑水平面上放置质量为M=2kg的足够长的小车A,其左端用水平轻绳拉住,且水平表面左端放置质量为m=1kg的小滑块B,A、B间的动摩擦因数为μ=0.1,今用水平恒力F=10N拉B,当B的速度达到2 m/s时,撤去拉力F,并同时剪断绳子(g=10m/s2)(保留两位有效数字)
求:(1)拉力F所做的功?
(2)最终B物体的动能。
汤姆生在测定阴极射线比荷时采用的方法是利用电场、磁场偏转法,即测出阴极射线在匀强电场或匀强磁场中穿过一定距离时的偏角。设竖直向下的匀强电场的电场强度为E,阴极射线垂直电场射入、穿过水平距离L后的运动偏角为θ(θ较小,θ≈tanθ)(如图A);以匀强磁场B代替电场,测出经过一段弧长L的运动偏角为φ(如图B),已知阴极射线入射的初速度相同,试以E、B、L、θ、φ表示阴极射线粒子的比荷q/m的关系式。(重力不计)