游客
题文

本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下

性别
是否达标


合计
达标

______
_____
不达标
_____

_____
合计
______
______

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

科目 数学   题型 解答题   难度 中等
知识点: 误差估计
登录免费查看答案和解析
相关试题

设函数,其中,曲线恒与轴相切于坐标原点.
(1)求常数的值;
(2)当时,关于的不等式恒成立,求实数的取值范围;
(3)求证:

如图所示,曲线C由部分椭圆C1=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1所在椭圆的离心率为

(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(P,Q,A,B中任意两点均不重合),若AP⊥AQ,求直线l
的方程.

已知Sn是数列{an}的前n项和,且Sn=2an-2n对n∈N*成立.
(1)证明数列{an+2}是等比数列,并求出数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

在底面是矩形的四棱锥P­ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.

(1)求证:平面PDC⊥平面PAD;
(2)求二面角E­AC­D的余弦值;
(3)求直线CD与平面AEC所成角的正弦值.

已知向量m=(sin ωx+cosωx,1),n=(2cos ωx,-)(ω>0),函数f(x)=m·n的两条相邻对称轴间的距离为
(1)求函数f(x)的单调递增区间;
(2)当x∈[-] 时,求f(x)的值域.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号