(本小题满分12分)
已知的图象经过点(0,1),且在x=1处的切线方程是y=x-2。(1)求
的解析式;(2)求
的单调递增区间。
已知椭圆(
)右顶点到右焦点的距离为
,短轴长为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过左焦点的直线与椭圆分别交于
、
两点,若线段
的长为
,求直线
的方程.
在四棱锥中,底面
是正方形,侧面
是正三角形,平面
底面
.
(Ⅰ)如果为线段VC的中点,求证:
平面
;
(Ⅱ)如果正方形的边长为2, 求三棱锥
的体积.
某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
(Ⅰ)求出表中、
、
、
的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;
分组 |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
(Ⅱ)若全校参加本次考试的学生有600人,试估计这次测试中全校成绩在分以上的人数;
(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.
公差不为零的等差数列{}中,
,又
成等比数列.
(Ⅰ)求数列{}的通项公式;
(Ⅱ)设,求数列{
}的前n项和
.
在锐角中,
.
(Ⅰ)求角的大小;
(Ⅱ)求的取值范围.