(本小题满分13分)已知函数,若数列满足,且.(Ⅰ)求证:数列是等差数列;(Ⅱ)令(),设数列的前项和为,求使得成立的的最大值.
在中,分别为角所对的边,且,,,求角的正弦值.
已知函数(是常数)在处的切线方程为,且. (Ⅰ)求常数的值; (Ⅱ)若函数()在区间内不是单调函数,求实数的取值范围; (Ⅲ)证明:.
已知数列的前项和为,,是与的等差中项(). (Ⅰ)证明数列为等比数列; (Ⅱ)求数列的通项公式; (Ⅲ)是否存在正整数,使不等式()恒成立,若存在,求出的最大值;若不存在,请说明理由.
已知函数,. (Ⅰ)当,时,求的单调区间; (2)当,且时,求在区间上的最大值.
设数列满足:,,. (Ⅰ)求的通项公式及前项和; (Ⅱ)已知是等差数列,为前项和,且,.求的通项公式,并证明:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号