(本小题15分)
已知函数有极值.
(1)求的取值范围;
(2)若在
处取得极值,且当
时,
恒成立,求
的取值范围.
(本小题满分10分) 选修4-4:坐标系与参数方程
在直角坐标系中,圆
的参数方程为
(
为参数)
(Ⅰ) 以原点为极点、轴正半轴为极轴建立极坐标系,求圆
的极坐标方程;
(Ⅱ) 已知,圆
上任意一点
,求
面积的最大值.
如图,已知直线PA与圆O相切于点A,经过点O的割线PBC交圆O于点B和点C,的平分线分别交AB,AC于点D和E.
(Ⅰ)证明:;
(Ⅱ)若,求
的值.
【原创】已知函数=
(
).
(Ⅰ)当=1时,求函数
在(1,0)点的切线方程;
(Ⅱ)当>1时,
>0,求实数
的取值范围.
(本小题12分)已知如图,圆和抛物线
,圆的切线
与抛物线
交于不同的点
,
.
(Ⅰ)当直线的斜率为
时,求线段
的长;
(Ⅱ)设点和点
关于直线
对称,问是否存在圆的切线
使得
?若存在,求出直线
的方程;若不存在,请说明理由.
为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下:
规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。
(Ⅰ)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;
(Ⅱ)现从乙厂抽出的非优等品中随机抽取两件,求至少抽到一件该元素含量为10毫克或13毫克的产品的概率。