已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)试用表示△的面积,并求面积的最大值.
⑴求过点向圆所引的切线方程; ⑵过点向圆引二条切线,切点分别是,求直线的方程。
在正方体,求所成角的正弦值。
在正方体中, ⑴求证:∥平面 ⑵求与平面所成的角。
求与定点及定直线的距离的比是5:4的点P的轨迹
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点. (1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标; (2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号