(本题14分)
已知向量动点
到定直线
的距离等于
并且满足
其中O是坐标原点,
是参数.
(I)求动点的轨迹方程,并判断曲线类型;
(Ⅱ) 当时,求
的最大值和最小值;
(Ⅲ) 如果动点M的轨迹是圆锥曲线,其离心率满足
求实数
的取值范围.
(本小题满分12分)如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=,点E、F分别为棱AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD.
(本小题满分12分)在平面直角坐标系中,点
,直线
,设圆
的半径为
,圆心在
上.
(1)若圆心也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围.
(本小题满分12分)在中,角
所对的边为
,且满足
(1)求角的值;
(2)若且
,求
的取值范围.
(本小题满分14分)设函数.
(1)若函数在
上为减函数,求实数
的最小值;
(2)若存在,使
成立,求实数
的取值范围.
(本小题满分13分)已知点在椭圆
上,椭圆
的左焦点为(-1,0)
(1)求椭圆的方程;
(2)直线过点
交椭圆C于M、N两点,AB是椭圆
经过原点
的弦,且MN//AB,问是否存在正数
,使
为定值?若存在,求出
的值;若不存在,请说明理由.