(本题13分)
已知函数.
(1)当时,求
的单调区间;
(2)若在
单调增加,在
单调减少,证明:
<6.
根据下列条件求椭圆的标准方程:
(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和
,过P作长轴的垂线恰好过椭圆的一个焦点;
(2)经过两点A(0,2)和B.
如图所示,已知A、B、C是椭圆E:=1(a>b>0)上的三点,其中点
A的坐标为(2,0),BC过椭圆的中心O,且AC⊥BC,|BC|=2|AC|.
(1)求点C的坐标及椭圆E的方程;
(2)若椭圆E上存在两点P、Q,使得∠PCQ的平分线总是垂直于x轴,试判断向量与
是否共线,并给出证明.
(1)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P(3,0),求椭圆的方程;
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(,1)、P2(-
,-
),求椭圆的方程.
一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心的轨迹方程.
设,等差数列
中
,
,记
=
,令
,数列
的前n项和为
.
(Ⅰ)求的通项公式和
;
(Ⅱ)求证:;
(Ⅲ)是否存在正整数,且
,使得
成等比数列?若存在,求出
的值,若不存在,说明理由.