(本小题满分16分)
已知数列﹛an﹜中,a2=p(p是不等于0的常数),Sn为数列﹛an﹜的前n项和,若对任意的正整数n都有Sn=.
(1)证明:数列﹛an﹜为等差数列;
(2)记bn=+
,求数列﹛bn﹜的前n项和Tn;
(3)记cn=Tn-2n,是否存在正整数m,使得当n>m时,恒有cn∈(,3)?若存在,证明你的结论,并给出一个具体的m值;若不存在,请说明理由。
在四棱锥中,
,
,
面
,
为
的中点,
.
(1)求证:;
(2)求证:面
;
(3)求三棱锥的体积
.
设的三个内角
,
,
所对的边分别为
,
,
.已知
.
(1)求角的大小;
(2)若,求
的最大值.
某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为
,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为
.
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:
否定 |
肯定 |
总计 |
|
男生 |
10 |
||
女生 |
30 |
||
总计 |
①完成列联表;
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中
人持否定态度,
人持肯定态度;二班有
名女生被抽到,其中
人持否定态度,
人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:
![]() |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
已知椭圆(a>b>0)抛物线
,从每条曲线上取两个点,将其坐标记录于下表中:
![]() |
![]() |
4 |
![]() |
1 |
![]() |
2 |
4 |
![]() |
2 |
(1)求的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若
,
(i) 求的最值.
(ii) 求四边形ABCD的面积;
已知各项均不相等的等差数列的前三项和为18,
是一个与
无关的常数,若
恰为等比数列
的前三项,
(1)求的通项公式.
(2)记数列,
的前三
项和为
,求证: