已知函数,
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根
,请求出一个长度为
的区间
,使
;如果没有,请说明理由?(注:区间
的长度
).
如图所示,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E为AD的中点, PA=PD=4,BC=AD=2,CD=
.
(Ⅰ)求证:PA⊥CD;
(Ⅱ)若M是棱PC的中点,求直线PB与平面BEM所成角的正弦值;
(Ⅲ)在棱PC上是否存在点N,使二面角N-EB-C的余弦值为,若存在,确定点N的位置;若不存在,请说明理由.
医生的专业能力参数可有效衡量医生的综合能力,
越大,综合能力越强,并规定: 能力参数
不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力
的频率分布直方图:
(Ⅰ)求出这个样本的合格率、优秀率;
(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.
①求这2名医生的能力参数为同一组的概率;
②设这2名医生中能力参数为优秀的人数为
,求随机变量
的分布列和期望.
已知点M到点的距离比到点M到直线
的距离小4;
(Ⅰ)求点M的轨迹的方程;
(Ⅱ)若曲线C上存在两点A,B关于直线l:对称,求直线AB的方程
已知展开式中各项的二项式系数和比各项的系数和大256;
(Ⅰ)求展开式中的所有无理项的系数和;
(Ⅱ)求展开式中系数最大的项.
已知恒成立,
方程
表示焦点在
轴上的椭圆,若命题“
且
”为假,求实数
的取值范围.