已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)=f1(x)+f2(x).
(1)求函数f(x)的表达式;
(2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解
设各项都是正整数的无穷数列满足:对任意
,有
.记
.
(1)若数列是首项
,公比
的等比数列,求数列
的通项公式;
(2)若,证明:
;
(3)若数列的首项
,
,
是公差为1的等差数列.记
,
,问:使
成立的最小正整数
是否存在?并说明理由.
设函数,
.
(1)解方程:;
(2)令,
,求证:
(3)若是实数集
上的奇函数,且
对任意实数
恒成立,求实数
的取值范围.
已知椭圆的右焦点为
,短轴的端点分别为
,且
.
(1)求椭圆的方程;
(2)过点且斜率为
的直线
交椭圆于
两点,弦
的垂直平分线与
轴相交于点
.设弦
的中点为
,试求
的取值范围.
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧
、弧
以及两条线段
和
围成的封闭图形.花坛设计周长为30米,其中大圆弧
所在圆的半径为10米.设小圆弧
所在圆的半径为
米(
),圆心角为
弧度.
(1)求关于
的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当
为何值时,
取得最大值?
如图,四棱锥中,底面
是平行四边形,
,
平面
,
,
,
是
的中点.
(1)求证:平面
;
(2)若以为坐标原点,射线
、
、
分别是
轴、
轴、
轴的正半轴,建立空间直角坐标系,已经计算得
是平面
的法向量,求平面
与平面
所成锐二面角的余弦值.