如右图,A、B、C、D为空间四点.在△ABC中,AB=2,AC=BC=.等边三角形ADB以AB为轴运动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.
正项数列的前n项和为,且. (Ⅰ)证明数列为等差数列并求其通项公式; (Ⅱ)设,数列的前项和为,证明:
解关于的不等式
如图,已知矩形所在平面外一点,平面,分别是的中点,. (1)求证:平面 (2)若,求直线与平面所成角的正弦值.
已知中,角A,B,C,所对的边分别是,且; (1)求 (2)若,求面积的最大值.
(本小题12分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点. (1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号