..(本小题满分12分)
已知:,
,
函数.
(1)化简的解析式,并求函数的单调递减区间;
(2)在△ABC中,分别是角A,B,C的对边,已知
,△ABC的面积为
,求
的值.
椐统计从化机械厂生产一种汽车曲轴,由于受生产能力和技术水平的限制,会产生一些次品,该厂生产这种产品的次品率与日产量x(单位:件)之满足关系
。已知每生产一件合格品可盈利3000元,但每生产一件次品将亏损1500元。
(Ⅰ)判断日产量x超过94时,生产这种产品能否盈利?并说明理由;
(Ⅱ)当日产量x不超过94时,将该厂生产这种产品每天的盈利额y(元)表示成日产量x的函数;为了获得最高日盈利额,日产量应定为多少件?
某班有48名同学,一次考试后数学成绩服从正态分布.平均分为80,标准差为10,问从理论上讲在80分至90分之间有多少人?
若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在1%以下设计的,如果某地成年男子的身高(单位:㎝),则该地公共汽车门的高度应设计为多高?
已知:从某批材料中任取一件时,取得的这件材料强度服从
(1)计算取得的这件材料的强度不低于180的概率.
(2)如果所用的材料要求以99%的概率保证强度不低于150,问这批材料是否符合这个要求.
设服从
试求:
(1)(2)
(3)(4)