游客
题文

(本题8分)某中学开展演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手

参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.
(1)  根据左图填写下表

 
平均分(分)
中位数(分)
众数(分)
九(1)班
85
 
85
九(2)班
85
80
 

 
(2)结合两班复赛成绩的平均数和中位数,分析哪
个班级的复赛成绩较好?
(3)如果在每班参加复赛的选手中分别选出2人参
加决赛,你认为哪个班的实力更强一些,说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 统计量的选择
登录免费查看答案和解析
相关试题

如图,抛物线轴交于点A(-1,0)、B(3,0),与轴交于点C(0,3).

(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为时,四边形FQAC是平行四边形;当点F的坐标为时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).

如图,AB是⊙O的直径,直线EF切⊙O于点C,AD⊥EF于点D.

(1)求证:AC平分∠BAD;
(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.(结果保留

已知:ABCD的两边AB、AD的长是关于的方程的两个实数根.
(1)当为何值时,ABCD是菱形?求出这时菱形的边长;
(2)若AB=2,那么ABCD的周长是多少?

如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).

(1)求抛物线的解析式;
(2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.

如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.

(1)求证:BD=BE;
(2)若ÐDBC=30°,CD=4,求四边形ABED的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号