如图所示,质量为M=0.7kg的靶盒位于光滑水平导轨上。在O点时,恰能静止,每当它离开O点时便受到一个指向O点的大小恒为F=50N的力。P处有一固定的发射器,它可根据需要瞄准靶盒。每次发射出一颗水平速度v0=50m/s,质量m=0.10kg的球形子弹(它在空中运动过程中不受任何力的作用)。当子弹打入靶盒后,便留在盒内不反弹也不穿出。开始时靶盒静止在O点。今约定,每当靶盒停在或到达O点时,都有一颗子弹进入靶盒内。
(1)当第三颗子弹进入靶盒后,靶盒离开O点的最大距离为多少?第三颗子弹从离开O点到又回到O点经历的时间为多少?
(2)若P点到O点的距离为S=0.20m,问至少应发射几颗子弹后停止射击,才能使靶盒来回运动而不会碰到发射器。
如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂,摆长相同,均为l。现将绝缘球拉至与竖直方向成θ=60°的位置自由释放,摆至最低点与金属球发生弹性碰撞。在平衡位置附近存在垂直于纸面的磁场,已知由于磁场的阻尼作用,金属球总能在下一次碰撞前停在最低点处,重力加速度为g。求:
(1)第一次碰撞前绝缘球的速度v0;
(2)第一次碰撞后绝缘球的速度v1;
(3)经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于37°
(你可能用到的数学知识:sin37°=0.6,cos37°=0.8,0.812=0.656,0.813=0.531,0.814=0.430,0.815=0.349,0.816=0.282)
如图所示,两根足够长的光滑平行金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30º角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m=0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能够保持静止。g取10m/s2,求:
(1)通过棒cd的电流I的大小; (2)棒ab受到的力F的大小; (3)棒ab运动速度的大小。
如图所示,AB为水平轨道,A、B间距离s=2m,BC是半径为R=0.40m的竖直半圆形光滑轨道,B为两轨道的连接点,C为轨道的最高点。一小物块以vo=6m/s的初速度从A点出发,经过B点滑上半圆形光滑轨道,恰能经过轨道的最高点,之后落回到水平轨道AB上的D点处。g取10m/s2,求:
(1)落点D到B点间的距离;
(2)小物块经过B点时的速度大小;
(3)小物块与水平轨道AB间的动摩擦因数。
一个匝数为1 000的金属圈所包围的面积为0.25 m 2 的闭合线圈平面与均匀分布的磁场的磁感线的方向垂直,该磁场的磁感应强度随时间变化的规律如图所示.画出0—4×10 -2 s内的感应电动势的图象,标明感应电动势的大小.
在建筑装修中,工人用质量为5.0kg的磨石A对地面和斜壁进行打磨,已知A与地面、A与斜壁之间的动摩擦因数μ均相同.(g取10 m/s2)
(1)当A受到水平方向的推力F1=25 N打磨地面时,A恰好在水平地面上做匀速直线运动,求A与地面间的动摩擦因数μ.
(2)若用A对倾角θ=37°的斜壁进行打磨(如图所示),当对A施加竖直向上的推力F2=60 N时,则磨石A从静止开始沿斜壁向上运动2 m(斜壁长>2 m)所需时间为多少?(sin 37°=0.6,cos 37°=0.8)