.甲、乙两射击运动员进行射击比赛,射击次数相同,已知两运动员击中的环数稳定在7,8,
9,10环,他们比赛成绩的频率分布直方图如下:(如果将频率近似的看作概率)
(1)估计乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率;
(2)求甲运动员击中环数的概率分布列及期望;若从甲、乙运动员中只能挑选一名参加某大型比赛,你认为让谁参加比较合适?
如图,在直三棱柱中, AB=1,
,
.
(Ⅰ)证明:;
(Ⅱ)求二面角A——B的余弦值。
已知命题:“函数
在
上单调递减”,命题
:“
,
”,若命题“
且
”为真命题,求实数
的取值范围.
在长方体中,已知DA=DC=4,DD1=3,求异面直线A1B与B1C所成角的余弦值。
(本小题满分12分)已知椭圆:,过坐标原点O作两条互相垂直的射线,与椭圆分别交于A,B两点.
(I)求证O到直线AB的距离为定值.
(Ⅱ)求△0AB面积的最大值.
(本小题满分12分)如图,在长方体ABCD-A1B1C1D1中,AD=AAl=1,AB=2,点E在棱AB上移动.
(I)证明:D1E上AlD;
(Ⅱ)当E为AB的中点时,求点E到面ACD1的距离;
(Ⅲ)在(II)的条件下,求D1E与平面AD1C所成角的正弦值.