如图所示,在光滑的水平地面上有一块长木板,其左端固定一挡板,挡板和长木板的总质量为m1 =3kg,其右端放一质量为m2= 1kg的小滑块,长木板的右端到挡板的距离为L=lm,整个装置处于静止状态。现对小滑块施加一水平拉力,将它拉到长木板的正中央时立即撤去拉力,此过程中拉力做功W=20J。此后小滑块与挡板碰撞(碰撞过程无机械能损失,碰撞时间极短),最终小滑块恰好未从长木板上掉下来。在小滑
块与长木板发生相对运动的整个过程中,系统因摩擦产生热量Q=12J。求:
(1)小滑块最终的速度大小;
(2)碰撞结束时,小滑块与长木板的速度;
(3)在小滑块与长木板发生相对运动的整个过程中,小滑块运动的位移大小。
如图所示为质谱仪的原理图,A为粒子加速器,电压为U1;B为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;C为偏转分离器,磁感应强度为B2。今有一质量为m、电量为q的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R的匀速圆周运动,求:
⑴粒子的速度v;
⑵速度选择器的电压U2;
⑶粒子在B2磁场中做匀速圆周运动的半径R和运动时间t。
如图所示,PQ和MN为水平、平行放置的金属导轨,相距1m,导体棒ab跨放在导轨上,棒的质量m=0.2kg,棒的中点用细绳经滑轮与物体相连,物体质量M=0.3kg,棒与导轨间的动摩擦因数
=0.5,匀强磁场的磁感应强度B=2T,方向竖直向下,为了使物体保持静止,应在棒中通入多大的电流?方向如何?
如图所示的电路中,电源的电动势为2V,内阻为0.5Ω, R0为2Ω,变阻器的阻值变化范围为0~10Ω,当S闭合后,求:
(1)变阻器阻值多大时,R0消耗的功率最大,其最大功率为多少?
(2)变阻器阻值多大时,变阻器消耗的功率最大,其最大功率为多少?
如图,一质量为1 kg的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°,现小球在F=10N的沿杆向上的拉力作用下,从A点静止出发沿杆向上运动,已知杆与球间的动摩擦因数m为
。试求:
(1)小球运动的加速度a1;
(2)若F作用2s后撤去,小球上滑过程中距A点最大距离Sm;
(3)若从撤去力F开始计时,小球经多长时间将经过距A点上方为4.64m的B点。
如图甲所示,质量m=4kg的物体在水平面上向右做直线运动。过a点时给物体作用一个水平向左的恒力F并开始计时,选水平向右为速度的正方向,通过速度传感器测出物体的瞬时速度,所得v-t图象如图乙所示。(取重力加速度为10 m/s2)求:
(1)8s末物体离a点的距离
(2)力F的大小和物体与水平面间的动摩擦因数μ;