(本小题满分14分)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=+2a+,x∈,其中a是与气象有关的参数,且a∈],若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1) 令t=,x∈,求t的取值范围;
(2) 省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标?
已知四棱锥中,底面
为直角梯形,
.
,
,
为正三角形,且面
面
,异面直线
与
所成的角的余弦值为
,
为
的中点.
(Ⅰ)求证:面
;
(Ⅱ)求点到平面
的距离;
(Ⅲ)求平面与平面
相交所成的锐二面角的大小.
已知数列满足:
.
(Ⅰ)求;
(Ⅱ)设,求数列
的通项公式;
(Ⅲ)设,不等式
恒成立时,求实数
的取值范围.
已知向量,
,函数
(Ⅰ)若,求
的值;
(Ⅱ)在锐角中,角
的对边分别是
,且满足
,求
的取值范围.
某中学的高二(1)班男同学有名,女同学有
名,老师按照分层抽样的方法组建了一个
人的课外兴趣小组.
(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实 验,求选出的两名同学中恰有一名女同学的概率;
已知函数图象上点
处的切线方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)函数,若方程
在
上恰有两解,求实数
的取值范围