一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:
手机型号 |
A型 |
B型 |
C型 |
进 价(单位:元/部) |
900 |
1200 |
1100 |
预售价(单位:元/部) |
1200 |
1600 |
1300 |
(1)用含x,y的式子表示购进C型手机的部数;
(2)求出y与x之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元 ,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
如图,为
的直径,点
为
上一点,若
,过点
作直线
垂直于射线
,垂足为点
.
(1)试判断与
的位置关系,并说明理由;
(2)若直线与
的延长线相交于点
,
的半径为3,并且
.求
的长.
小明和小刚做纸牌游戏,如图,两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各抽取一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.
已知关于x的一元二次方程(a+c)x2+2bx+(a-c=0),其中a、b、c分别为△ABC三边的长.
(1)如果是方程的根,试判断
的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断的形状,并说明理由;
(3)如果是等边三角形,试求这个一元二次方程的根.
在下列网格图中,每个小正方形的边长均为1个单位.在中,
,
.
(1)试在图中做出以
为旋转中心,沿顺时针方向旋转90°后的图形
;
(2)若点B的坐标为,试在图中画出直角坐标系,并写出
、
两点的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形,并写出
、
两点的坐标.